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Response of a nonlinear Hamiltonian system to the external harmonic field:
Resonant and chaotic cases
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The response of a classical nonlinear oscillator to the homogeneous external field with harmonic time
dependence is studied beyond the domain of applicability of the perturbation theory. The new quantity, a
harmonic susceptibilityHS) that is proportional to the ensemble average of the Fourier amplitude of motion
with the same frequency and phase as the external field, is introduced. In the off-resonant region, HS tends
asymptotically to usual linear susceptibility. The cases of the intermediate field strength, when the isolated
nonlinear resonance prevails, and that of the strong field, when the resonances overlap and the extended chaotic
component is formed in the phase space, are studied. For both cases the analytical expressions for HS are
obtained in the form of quadratures and confirmed by the comparison with the results of direct numerical
simulation.[S1063-651X99)06812-9

PACS numbds): 05.45—a, 03.65-w

I. INTRODUCTION For classical models, the ensemileis usually taken as a

. . .microcanonical oneH,=E) with the uniform (on the in-
In this paper we study the response of a classical Hamil- AR : .
) . . X duced measujdlistribution of the phase density on the in-
tonian system to the external field with a harmonic depen-_ -

variant component of the phase spézé

dence on time and medium or strong magnitudes. This model By definition, the response of the system to the external

can describe the_ mlcrq-obj_ecﬂwch as atoms, clus'gers, mol- field is given by the ensemble average of the law of motion
ecules, and their ionsin highly excited states with large . . )
of the active coordinate of the perturbed system:

principal quantum numbean>1, under the influence of the
external monochromatic electromagnetic wave. In these R(t;F, @) = (x(1))e. (1.9
cases the value of Planck’s constant in natural units of the Y

system is smallfi~n~'<1, and the radiation damping is |n the limit of infinitely small external field magnitude, the

negligible. response can be written in the form
Let us assume that the unperturbed system can be de-
scribed by an autonomous conservative model with the R(t;F,w)=F[a’'(w)coswt+ a"(w)sinwt], (1.5

Hamiltonian function
where the quantities’ and «” are the real and imaginary

52 parts of thelinear susceptibility The explicit form of linear
Ho(r'.p)= — +U(r), 1.1 susceptibility, given by nonstationary quantum perturbation
o(T,P) 2M (r) (.3 theory, is well known 1], [p. 44Q,
- - ; ; 1 2| Xl ?@yn
wherer andp are vectors of the Cartesian coordinates and a(w)=— 2 —_—, (1.6)
the components of momentum correspondingly, Bhid the h K o= (0+i0)

mass of the particle. The external perturbation will be de- _ _ ) )
scribed by the addition tél, the term wherex, is the matrix element of the active coordinaig,,

is a transition frequency between the stdtésand|n), and
win= (Ex—Ep)/fi.
Its classical analog for one-dimensional systems was ob-
tained in[3]
where theactive coordinate xs one of the Cartesian coor-
dinates, and the scalar quantiyfor obvious reasons will be “d
called the external field. a(w)=202 ﬁ(
The theory of response is constructed for the ensentbles st
of the systems, in which the average value of the activ
coordinate in the absence of the external fiffiok F=0)
equals zero[1], (p. 421):

V(X,t)=—XxF coswt, (1.2

s%X420

s°0%+(w+i0)?)’ (1.7

(?/vherexs is the amplitude of theth Fourier harmonic of the
unperturbed motion, an@ is the main harmonic frequency.
The linear susceptibility is well defined only in the limit
of the infinitely small field magnitude, when the response
(X(t)o)e=0. (1.3 can be written in the forn{1.5). For finite although arbi-
trarily small values of, the linear susceptibility loses valid-
ity in the resonant case, that is, for sufficiently small fre-
*Electronic address: pve@astra.phys.msu.su quency mismatches. In this domain of parameters the
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external field strongly influences the motion of the systemin the following we use the system of units in whidh
To describe the system’s response in this case the methodsl, A=1/2, andB=1/4.
that go beyond the perturbation theory are needed. We shall restrict ourselves by studying the energy range
Nonperturbative approaches to the problem of the reE>0, where there is only one connected domain of the clas-
sponse have been developed in the frame of the quantusical motion, and introduce the action-angle variables for the
theory. For strongly anharmonic systems near the resonancmperturbed system. The action varialblés given by the
the model of a two-level system can be ugéll whereas for  expression
weakly anharmonic ones the model of quantum nonlinear
resonance in the rotating-wave approximafibr7] could be 1 Je
applied. However, the applicability of these methods is con- (E)=5— 3£ pdx=—75—[(e-1DK(e+)+2K(e-)],
trolled by the conditions of smallness of certain dimension- (2.2
less parameters that are proportionaktol. Therefore it is
impossible to stretch these approaches to the quasiclassicgheres = \/1+4E,
limit #—0.
To describe the response of a classical system to the reso- etl e—1
nant field, we shall introduce a new quantity, the harmonic €+~ NV o -7 NV o 2.3
susceptibility, which extends the notion of the linear suscep-
tibility to arbitrary values of amplitude and frequency of the and K(z) is the complete elliptic integral of the first kind.
external field, and whose definition will be valid irrespective Equation (2.2) defines implicitly the Hamiltonian function
of the character of the systems motion, whether it is regulaH (1) = E of the unperturbed two-well oscillator. Further, we
or chaotic. treat the dependence of variables on the en&gyd on the
If for t<0 the ensembl& of the systemg1.1) was in a  action| on equal footing. The frequency of the unperturbed
state that had the property.3), and if fort>0 the field was  motion Q(1), which yields the rate of increase of the angle
turned on within the time interval Qt<r so that fort>r  variable#, is given by the relation
the field can be described by the mo¢&l2), then the quan-

tity dHo(1)  m\e
- Q)= d 2K (2.9
A(w):linwﬁjo {x(t))coswtdt (1.8 For a given energy valuk [or the corresponding action

valuel (E)] and the initial conditiorx(0), the law ofmotion
will be called theharmonic susceptibilitpf the system. This  X(t) can be expressed explicitly in terms of the Jacobi ellip-
quantity is proportional to the amplitude of the Fourier com-tic functions. This motion is periodic and can be represented
ponent of the averaged perturbed motion of the systenRY its Fourier expansion:
which coincides with the external field in frequency and in
phase. The harmonic susceptibility depends in general on the
field strength(see the Appendijxand in the limitF—0 is in
agreement with the linear susceptibility: if the response of
the system has the ford.5), then the harmonic susceptibil- where §=Q(1)(t—t’), andt’ is the moment of time when

x<t>=n§1 an_1(1)cog (2n—1) 4], (2.5

ity the particle is at the right turning point.
The Fourier amplitudea,,_(l) are given by
Alw)=a'(w). (1.9
77\/2 K(e-)

The purpose of this paper is to study the properties of the asn_1(1)= coshl< 2n—1)m ) (2.6
harmonic susceptibility of a nonlinear system with one de-

K(e+)
gree of freedom in the cases of regular and chaotic motion q&t a given value of. the amplitudes decrease exponentiall
the system. In Sec. Il the model is described and the pend g ’ P P y

WWith the growth ofn. If the value of the energi is not too

Lybr_r:_tHa_\mlfltonlgnf IS derlyetd. In i.ei' ”fl tIP:je harm_(:n:jc Susﬁep'small (E>1), then the first harmonic dominates in the law of
' Illy IS ounl_ or-an in ermed|a N Iet rr|1agsn| 4 IG\}/' t\rl1v ehn motion: a,,,_1/a;<<1 for all n=2. Thus the one-mode ap-
only one nonlinear resonance dominates. In Sec. € hats, o imation of the law of motion,

monic susceptibility is found for a strong field, when wide-
spread chaos is observed. The main results are summarized x(t)~a,(1)cosé 2.7
in Sec. V. ’

K(ey)

can be used in this energy range.
Il. THE MODEL The perturbed motion of the system can be studied in the
) . paradigm of the nonlinear resonarj@-10]. Let us consider
As an example for the study we took the Duffing oscilla- the system(2.1) with the initial energyE under the external
tor with the tV\_/o-w_eII poten_tlal, that is, modél.1) and(1.2 perturbation(1.2), which is suddenly imposed-&0) at the
with the Hamiltonian function momentt=0. With the assumptiori2.7), the Hamiltonian
2 function of the perturbed system can be written in the form

_Pb
Ho(x,p) = or —AX*+Bx". @D H(I,0,t)=Ho(l)—Fay(1)cosfcoswt.  (2.8)
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fibrators routors <y2Fal«k sin(y/2), the phase points are captured in the non-

linear resonance and the motion is libratifg};#0). Out-
side the separatrix, wheté|> \2Fa/ k sin(/2), the motion

of the pendulum is rotating({/);=0). The frequency half-
width of the nonlinear resonanck, at the energy valu&
=E(l,) can be defined from Eq$2.13 and(2.10 as

A,=2Fax. (2.14

The pendulum Hamiltonian is valid for describing the mo-
tion of system(2.1) if the higher terms of the functior@(I)
anda,(l) are negligible at all possible values of action mis-
: ) ) match within the separatrix. These conditions impose the
pa_ll_angular mome_ntu_nd(p) Is the same for _all_the pendulums; the limitations (from above on the field strength, which, how-
initial phasey(0) is distributed uniformly withi 0,27]. The tra- - . . . .

ever, was never violated in the physically interesting range

jectories outside the separatrix are rotators, the trajectories within]c t | Th ther limitati f th inal
the separatrix are librators. Librators exist only [J(0)| Oof parameters values. e other imitations © € single

0 > 2n

FIG. 1. The localization of ensembl (see Sec. Ill A in the
phase space of the pendulyg113 (dimensionless unijs The ini-

< [5Falx resonance pendulum model are related to a possible overlap
' of resonances; they will be discussed in Sec. Ill C. We note
The corresponding equations of motion are in passing that the resonance model remains valid however

small the frequency mismatch may be.

. . da;
|=—Fa,sinf coswt, =Q(l)—F —-cosé coswt.
isingcosot,  §=€(1) = F-grcosf cosw Ill. THE RESONANT CASE

2.9 A. The analytical solution
Let I denote the value of the action variable of the unper- | this section we shall study the response of the system
turbed model such that the corresponding frequency equalg the domain of parameters where the pendulum model with
that of perturbation{}(lo) = w. If the field frequency is close  tne single resonance is applicable. Let us consider the micro-
to that of the unperturbed motiom~((E), then the fre-  canonical ensemblE of two-well oscillators with the same
guency dependence on the action can be linearized: energyE (and, consequently, the same value of actipand
random phase®(t) at any given moment of time. If the

Q)=o)+, (210 perturbation is switched on instantly &t 0, then att=+0
where the nonlinearity parameteris equal to the derivative the ensemblé of pendulums which corresponds to the en-
of the frequency on action, sembleE consists of systems with the same value of the

angular momentum J(0)=I1(E)—1o=A/kx, where A
dQ(1) =Q(E)—w is the frequency mismatch, and with initial
K=—qr 211 phasesy(0)= ¢, distributed uniformly within[0,27] (see
Fig. 1). The effective energieB,=H(J,#) of these pendu-
taken at the valué=1,, andJ=1—1, is the action mismatch lums, consequently, are different. They belong to the interval
assumed to be small. By the introduction of the slow angle
variabley= 6— wt, neglecting all nonresonant terms and ig- 532(0)_ EgE < 532(0)+ E_ (3.1
noring the dependence of the first harmonic amplitude on the 2 2 P2 2

action valueg,(1)=~a;(ly)=a, Egs.(2.9) turn into the sys-

tem If the modulus of the frequency mismatch does not ex-
ceed the frequency half-width of the resonanieel<A,,
then some phase points of the ensemble of penduRiiaa®
captured in the nonlinear resonan@dratory and some
phase points stay outside the separafriatators. If |A|
These equations are the canonical ones for the Hamiltoniap A, , then all points of the ensemble stay outside the sepa-

) Fa .
J~—7sm¢, = KJ. (2.12

function of the pendulum, ratrix and only rotation is possible.
Fa In the one-mode approximatiai2.7), the law of motion
_Kp_ e X(t) can be written as
Hp(J,4) 2J 5 coSsi. (2.13
X(t)=~a;(t,¢)cosy(t,p)coswt. (3.2

The variableJ is the angular momentum of the pendulum
and ¢ is the angle variable. The transition from the Hamil-
tonian(2.8) to the effective Hamiltonian2.13 is a standard
procedure of the nonlinear dynamics, discussed in man
sourceq9,10].

The phase space of the pendulysee Fig. 1 has three
distinct regions. Within the separatrix of the system, |fir

From the definition of the harmonic susceptibility.8) for
ywe ensembl&, we have

A(w)= 2 ((cosp(t) e 33
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where( ), denotes the averaging over the period of pendu
lum (which depends on its initial phagg, and( ), denotes
the ensemble averagirigver ¢).

The time averaging in Eq.3.3) can be carried out ana-
lytically. Let us introduce the dimensionless function

2
6(¢)=§Hp(3(0),¢)=§—008¢, (3.9

where /= «J(0)?/Fa. Then for the rotator states—(1<e
<1)

E 1+
(cosy(t,)){"= —1+2%, 7=\ 5 35
and for the librator stateset>1)
E(¢) 2
(COSlﬂ(t,go)>§l)=—a+(a+ 1)%, =Vire
(3.6

HereK(z) andE(z) are the complete elliptic integrals of the
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FIG. 2. The harmonic susceptibilii(w) of the Duffing oscil-
lator in the resonant case for values of the initial endegyl and
the field amplitudeF = 4.24x 10 2. All the units are dimensionless.
Solid line, calculations based on the form(®a?); circles, the result
of numerical simulations. The bars indicate the standard deviation
SA in the ensemble. The resonance at the third harmonic is clearly
visible in the vicinity of w~3.3 (see Sec. Il ¢

To obtain one point of the theoretical plot, the integrals
(3.7 were calculated over the total number of pois
=10%. The numbers of pointd" and N used for the

first and second kinds correspondingly. Thus the harmoni€alculation of the contributions of rotators and librators in

susceptibility of the microcanonical ensemble of Duffing os-
cillators with the energy in the 1:1 resonance is given by
the following formula:

_ a B )
A(w)—ﬁ{J_B@OS(ﬂ(t,qD))t do

: 3.7

+ fzrﬁ(coswt,(p))g')dgp
B

where 8=arccos¢— 1) for 0<{<2 andB=0 for {>2.

Equation (3.7) permits us to segregate the asymptotic
forms of harmonic susceptibility. For large frequency mis-
matches A>A,), the harmonic susceptibility in the resonant
approximation has the asymptotic form

ka?®

A R e

(3.9

In this nonresonant case the perturbative approach is valid;

gives for the linear susceptibility the same asympt@3i@).

It means that Eq(3.7) can be used for the calculation of the

harmonic susceptibility of a nonlinear system far away from
the resonance as long as the one-resonance approximati
holds.

B. The numerical calculations

In the derivation of the pendulum mod&.13, several

the harmonic susceptibility depended on the valueBof
NO=[Np/7], NO=N-N©O where rectangular brackets
[ ] denote the truncation of a fractional part of a number in
the brackets.

In the numerical experiment, the ensemBlevas formed
by 1¢? different trajectories distributed uniformly along the
line, which corresponded to the same endegyl. For each
set of the initial value$x; ,p;}, the equations of motion were
integrated numerically by the Runge-Kutta Fourth-order
method with the time stefit=min{0.05,27/50w~1}. Simul-
taneously with the integration, the contributién(») of the
trajectory to the harmonic susceptibility was calculated as

Ai<w)=2k Xi(t)cog wty), (3.9

wheret, is the moment of time, which corresponds to ktle

integration stepf,=kAt. The time averaging was carried

over the intervalsT=27x10°0 1. Finally, the average
alue A(w) and the standard deviatioPA(w) of the array
A;(w)} were calculated.

The most prominent feature of the dependeA¢e) is a
maximum at the center of the resonance. The estimate of the
YRper limit of the maximal value oA(w) in the exact reso-
nance is given bw/F, which for our set of parameters yields
maxA<40. The rotators always produce negative contribu-
tions toA(w); they dominate when the frequency mismatch
exceedsA, . Outside the resonant domain the behavior of
A(w) is close to that of the perturbative linear susceptibility

approximations have been made that have unclear influengiven by Eq.(1.7); the negative contribution from the term
on the numerical accuracy of the final result. Therefore, it isof the second order iA ~! prevails everywhere in the non-
worthwhile to compare the theoretical results with the directresonant domainA|>A, except the range of low frequen-
numerical simulation of the motion of the system. cies:A(w)>0 if ®<<0.32. The absolute value of harmonic
This comparison is presented in the Fig. 2. The theoreticasusceptibility is too small in this range to be visible in the
and experimental values of the harmonic susceptibiigre  plot.
plotted as functions of the perturbation frequengyor the The dependence of the form A{ w) on the parameters is
ensembleE with the initial energyE=1 for the field value clear. The variation of the initial enerdy shifts the curve as
F=4.24x10 2. a whole reflecting the change of the first harmonic fre-
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guency. The increase of the field amplitugalecreases the
height of the resonant maximum and broadens it. On the =0 &, =y2Fax
contrary, ifF—0, then the resonance width diminishes like
A,~JF, and the peak value increases likg ~ 1/F.

C. The higher resonances

The numerical results presented in Fig. 2 show also a 0
smaller peak of the harmonic susceptibility at the frequency
0~3.3. It can be interpreted as a trace of the resonance F|G. 3. The overlap of 1:1 and 1:3 resonan¢sshematically;
between the frequency of the third harmoni@ ®f the un-  arbitrary units. The upper and lower borders of the 1:1 and 1:3
perturbed motion of the system and the frequency of theesonances are plotted by solid lines. The widths of the resonances
external fieldw [following the ratioQ)(E)/w, we shall call it  increase with the field magnitude. The overlap of the resonances
subharmonic resonance 1:3[o study this region, the new that occurs aF, indicates a threshold of the widespread chaos.
pendulum model must be constructed in the way described in
Sec. Il mate of a perturbation strength that leads to the widespread
By taking into account only the resonant third harmonicchaotic motion.
of the unperturbed motion, we come to the effective pendu- For the Duffing oscillator in the range of initial energies

Fy F

lum Hamiltonian, E~1, the chaos thresholg, for the given frequency of the
5 perturbation is governed by the overlap of 1:1 and 1:3 reso-
ek 3K..,2 Fa nancegsee Fig. 3 the widespread chaos appears when the
Hp(d.¥) = 53~ 7‘305‘/’ (310 field of frequencyw and amplitudeF becomes resonant for
both the first harmonic of the unperturbed motion at the en-
where ergy E and for the third harmonic of the unperturbed motion
at a smaller value of enerdy. The condition of overlap of
~ aQ) - resonances can be written in the form
K=—q1 a=az(l), (3.11
w A,
w—A=c+— (4.7
taken atl —Io, which is defined by the equationqT ) 3 3
=w; J=1-14, Yy=36— wt. From Eq.(3.10, the maximal

mismatch between the third harmonic of the unperturbe hrroer;lhlc—Z)%s.(Z.lé, (3.12, and(4.1) we obtain for the chaos

motion and the field frequency, which we shall call the fre-
quency half-width of 1:3 resonance at the enerBy A

=E(Ty), A,, is equal to Fyx=

—. 4.2
9(v2ka+ \/2K<’:l)2
Ar=3V2Fax. (312 |n Fig. 4 the chaos threshol, is plotted as a function of

field frequencyw. Figure 4 shows that the value of the field

The widths of 1:1 and 1:3 resonances, which correspond tp _; provides the widespread chaos in the range of field
the same value of enerdy, are related as frequencies»<2.07

Although the chaotic motion is mixing, thus leading to the
_3\/g (3.13 continuous power spectra of dynamic variables, the har-
a ' monic susceptibility of the ensemble does not vanish. For the
system that is strongly perturbed by the harmonic external
sincel,=1, in this case. For energg=1 the ratioA,/A, field, the spectrum contains also a singular component at the

~0.88, which is in good agreement with Fig. 2.

l>| >

r

F
x

IV. THE CHAOTIC CASE s

In the preceding section we assumed that the perturbed
ensemble remains always near one of the isolated nonlinear 1.0
resonances. In this case the motion of each system is quasi-
periodic with two frequencies, one of which coincides with
the frequency of the perturbation, and another depends on
the initial conditions.

The growth ofF leads to the increase of the widths of the 0.0
resonancegsee EQ.(2.14)]. For every pair of resonances
there is a critical ValU@X of field Strength at which they FIG. 4. Chaos thresho|§ as a function of field frequency
overlap. This event is usually treated as a cause of the apdimensionless unijs The external periodic field with the ampli-
pearance of widespread cha@hirikov’s criterion [9,10].  tude F=1 leads to chaotic motion, if its frequency satisfies the
The valueF, is called “chaos threshold” and gives an esti- inequality »<2.07.

0.5 1.0 1.5 2.0 @
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initially microcanonical ensembl& of Duffing oscillators
diffuses to lower energies within the time of the order of the
inverse Lyapunov exponent. Thus, the effective ensemble
E’, which actually responds on the perturbation, essentially
differs from E. We can think about every system in the en-
semble as if it were in the 1:1 resonance with the external
field. This assumption is justified by the great width of this
resonance. The positive contribution of systems with small
frequency mismatches to the harmonic susceptibility prevails
and leads to the plateau in the dependei(e).

To make the analytical description of harmonic suscepti-
bility of the effective ensembl&’ tractable, we use a set of
d':"implifying assumptions. First, only the ma{i:1) reso-
system on the Poincaections O, momentum of particleD X, nances are taken into account and con5|dereq to _be |sola§ed.
its coordinate; units are dimensionlgder the ensemble wittE Second, We assumg that the energy of a part'de IS Chqnglng
=1. The stroboscopic sectiorfg represent the moments of time PY rareé jumps. Third, we assume that in the domain

t=(27/w)(k+]}/4). Lines denote the external border of the sec-<{2(E) the effective ensembl&’ has the uniform energy
tion taken at the previous value of phase. distribution. If ®>Q(E), then the effective ensemblg’

does not form and the response can be described as a reso-

frequencyw. Thus the motion of the system has the proper-hant one.

ties of a nonstationary random process. This is clearly seen With these assumptions the harmonic susceptibility can

from the traces of the phase trajectory on the Poinsae  be cast in the form of the onefold or twofold quadratures:

tions (see Fig. % that are taken at different values of the o

phase¢ of the perturbing field. Patterns on the Poincare Alw)=A"(w;E) for o>Q(E) 4.3

sections demonstrate that for the chosen vakiesl.0, E

=1.0, andw=1.0 the chaotic component of the phase spac@nd

covers nearly all the surface of the section. On the other £

hand, the shape and the position of the section depend on the Alw)= J A w;e)

field phasep periodically, i.e., regularly. Hence, chaotic and 0

regular responses coexist. o
For the numerical calculation of the harmonic susceptibil-where A®{w;e) denotes the resonant susceptibility of the

ity A(w) in the chaotic regime we have taken valugs mlcrocanonlcal ensemble of .Dufflng oscillators with the en-

=1.0,E=1.0. The dependence is shown in Fig. 6 by the thinerdy & given by Eq.(3.7). In Fig. 6 the result of the numeri- -

line. We note the following specific features: first, there is ac@l calculation is shown as a solid line. The agreement is

plateau at the low field frequencies<Q(E); second, the 9uite satisfactory, _esp_em_ally if one tak_es into account the

resonance shape is qualitatively reproduced in the range crudeness of the simplifying approximations. _

>Q(E). The origins of both of these features are clear. 1he theory presented above uses the concept of the in-

Given the field magnitudee=1.0, in the case of high- Stantaneous frequency of motiél(E), which is appropriate

frequency perturbatiom>2.07, the motion remains regular only if (27/€2) <. This condition can be rewritten in the

since the 1:1 resonance persists. In the low-frequency rang&rm

®<2.07, the motion is chaotic. Since chaos originates from

the overlap of 1:1 resonance at enefgyith 1:n subreso- ‘ﬂ‘ Fo<l 4.5

FIG. 5. Traces of the phase trajectory of a strongly perturbe

d

ES for w<Q(E), (4.4

nances, which correspond to smaller values of energy, the dE

A whereT=27/(} is the period of the Duffing oscillator. The
inequality (4.5) is violated in the vicinity of the saddle value
05F of the energyE=0, which imposes the restriction on the

field frequency. For example, =1, then for the 1:1 reso-
nance, Eq(4.5) gives the lower limit of the field frequency
0.0 w_~0.8.

V. CONCLUSIONS

In this paper, a new characteristic of the response of the

0 n 5 3 . nonlinear systems to the external harmonic field, the har-
monic susceptibilityA(w), has been introduced and studied.

FIG. 6. The harmonic susceptibilig(w) of the Duffing oscil- 1 h€ harmonic susceptibility properly generalizes the com-

lator in the chaotic case for values of the initial enefgy 1 and ~ Mon linear susceptibility but does not impose any restrictions

the field amplitudeF=1. All the units are dimensionless. Solid 0N the parameters of the field or the character of the system’s

line, calculations based on the formulgs3) and (4.4); dots, the ~ motion. The quantityA(w) has the exact value if the states
result of numerical simulations. of the ensemble remain localized in the phase space; this




PRE 61 RESPONSE OF A NONLINEAR HAMILTONIAN SYSTEM.. .. 2585

condition is always fulfilled for the resonant case. In the The unperturbed system is described by the Hamiltonian

chaotic case the overlap of resonances can produce the onﬂa& with the energy spectrurfE,} and wave function$n).

of the unlimited diffusion in the phase space, which eventu-The homogeneous electric field of frequeneyand strength
ally may lead to the decay of the systéeng., the stochastic /e whereeis the electron charge, is imposed along @
ionization of the highly excited atomfgl1-14). For this  agxis. |f w~wn,=(En—Ey)/%, m>n, then in the rotating-
class of systems the harmonic susceptibility can serve as\gave approximation the two-level system can be described

The harmonic susceptibility has clear experimental meanznqw:

ing. If the ensemble of the identical noninteracting nonlinear

oscillators with equal energies and random phases is sub- u=—Av, v=Au+Qw, w=-Qu, (Al
jected to the field of a monochromatic wave, then the inten-

sity of the scattered radiation is proportional to the square ofvhere A=w—w,,,, Q, is the Rabi frequency,Q,
A(w) .provided Fhat th_e spatial extent of the ensemble iS:ZdOF/ﬁe, andd is the matrix elemerdy=(n|eXm). The
small in comparison with the radiation wavelength. componentv describes the population inversion, whereas the

We have studied only the one-dimensional examplecq,nhonents ando are related to the atom’s dipole moment
However, the harmonic susceptibility can be calculated ford(t).

systems with any number of degrees of freedom. That per-

mits us to study the response of the system with the chaotic d(t)=d,[u coswt—v sinwt]. (A2)
unperturbed motion in the harmonic fields of finite ampli-

tude. At present, only the case of the infinitesimal fieldSolving Eq. (A1) with the initial conditionsu(0)=uv(0)
strength has been studi¢t5,16. The concept of harmonic =0, w(0)=—1, which correspond to the initial stat&0)
susceptibility can be straightforwardly generalized to the:|n>, we obtain for the dipole moment

nonlinear harmonic susceptibilities that describe the response
2

of the system on higher harmonics of the frequency of the - oF | A
perturbation in external harmonic fields of finite amplitudes. d(t)=(ex= e @COSWH BaE (A3)
s
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- denotes terms with other frequencies. Thus, the
¢ susceptibility1.8) of the two-level model is equal

APPENDIX Alw)=— —>. (A5)

The dependence of the characteristics of the synchronic
component of the response on the field magnitude is an aWe note that in contrast with the properties of the harmonic
ready known effect in quantum radiophysics. In particular,susceptibility of the nonlinear oscillator, the HS of the two-
such a dependence occurs in the response of the two-levigivel system decreases likd w)o<F ~2 in the limit of strong
model[4]. fields, and thalA(w) =0 in the exact resonance.

[1] L.D. Landau and E.M. LifshitzStatistical Physics, Part,14th [8] G.M. Zaslavsky and N.N. Filonenko, ZﬁkEp. Teor. Fiz54,

ed. (Nauka, Moscow, 1995(in Russiai. 1590(1968 [Sov. Phys. JETB4, 1590(1968)].
[2] G.M. Zaslavskii and B.V. Chirikov, Usp. Fiz. Nauk05 3 [9] B.V. Chirikov, Phys. Rep52, 263 (1979.
(1971 [ Sov. Phys. Uspl4, 549 (1972]. [10] A.J. Lichtenberg and M.A. LibermarRRegular and Chaotic
[3] A.V. Gaponov, M.I. Petelin, and V.K. Yulpatov, lzv. Vuz'ov Dynamics 2nd ed.(Springer, New York, 1992
RadiofizikalO, 1414 (196n [Radlophys Quantum Electron. [11] B.l. |\/|eersor~|7 E.A. Oks’ and P.V. Sasoro\/, Pis’'ma Zhsﬁ
10, 794(1967]. _ Teor. Fiz.29, 79 (1979 [JETP Lett.29, 79 (1979].
[4] L. Allen gnd J. H. Eperlyoptlcal Resonance and Two-Level [12] J.E. Bayfield and P.M. Koch, Phys. Rev. L&8, 258(1974.
Atoms(Wiley-Interscience, London, 1975 [13] N.B. Delone, B.P. Krainov, and D.L. Shepelyanskii, Usp. Fiz.
[5] G.P. Berman and G.M. Zaslavsky, Phys. Lett. 64, 295

Nauk 40, 355(1983 [Sov. Phys. Usp26, 551 (1983].

[14] G. Casati, B.V. Chirikov, D.L. Shepelyansky, and I. Guarneri,
Phys. Rep154, 77 (1987.

[15] P.V. Elyutin and J. Shan, Phys. Rev. Lét, 5043(1996.

[16] P.V. Elyutin, Phys. Lett. A233 175(1997.

(1977).

[6] P.V. Elyutin and T.V. Filippov, Opt. SpektrosB8, 13 (1990
[Opt. Spectroscs8, 7 (1990].

[7] A.R. Kolovsky, Opt. Spektrosk69, 755 (1990 [Opt. Spec-
trosc.69, 759(1990].



