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Response of a nonlinear Hamiltonian system to the external harmonic field:
Resonant and chaotic cases

P. V. Elyutin* and B. V. Pavlov-Verevkin
Department of Physics, Moscow State University, Moscow 119899, Russia

~Received 6 January 1999; revised manuscript received 15 July 1999!

The response of a classical nonlinear oscillator to the homogeneous external field with harmonic time
dependence is studied beyond the domain of applicability of the perturbation theory. The new quantity, a
harmonic susceptibility~HS! that is proportional to the ensemble average of the Fourier amplitude of motion
with the same frequency and phase as the external field, is introduced. In the off-resonant region, HS tends
asymptotically to usual linear susceptibility. The cases of the intermediate field strength, when the isolated
nonlinear resonance prevails, and that of the strong field, when the resonances overlap and the extended chaotic
component is formed in the phase space, are studied. For both cases the analytical expressions for HS are
obtained in the form of quadratures and confirmed by the comparison with the results of direct numerical
simulation.@S1063-651X~99!06812-9#

PACS number~s!: 05.45.2a, 03.65.2w
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I. INTRODUCTION

In this paper we study the response of a classical Ha
tonian system to the external field with a harmonic dep
dence on time and medium or strong magnitudes. This mo
can describe the micro-objects~such as atoms, clusters, mo
ecules, and their ions! in highly excited states with large
principal quantum numbern@1, under the influence of the
external monochromatic electromagnetic wave. In th
cases the value of Planck’s constant in natural units of
system is small,\'n21!1, and the radiation damping i
negligible.

Let us assume that the unperturbed system can be
scribed by an autonomous conservative model with
Hamiltonian function

H0~rW,pW !5
pW 2

2M
1U~rW !, ~1.1!

whererW and pW are vectors of the Cartesian coordinates a
the components of momentum correspondingly, andM is the
mass of the particle. The external perturbation will be d
scribed by the addition toH0 the term

V~x,t !52xF cosvt, ~1.2!

where theactive coordinate xis one of the Cartesian coor
dinates, and the scalar quantityF for obvious reasons will be
called the external field.

The theory of response is constructed for the ensemblE
of the systems, in which the average value of the ac
coordinate in the absence of the external field~for F50)
equals zero,@1#, ~p. 421!:

^x~ t !0&E50. ~1.3!

*Electronic address: pve@astra.phys.msu.su
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For classical models, the ensembleE is usually taken as a
microcanonical one (H05E) with the uniform ~on the in-
duced measure! distribution of the phase density on the in
variant component of the phase space@2#.

By definition, the response of the system to the exter
field is given by the ensemble average of the law of mot
of the active coordinate of the perturbed system:

R~ t;F,v!5^x~ t !&E . ~1.4!

In the limit of infinitely small external field magnitude, th
response can be written in the form

R~ t;F,v!5F@a8~v!cosvt1a9~v!sinvt#, ~1.5!

where the quantitiesa8 and a9 are the real and imaginar
parts of thelinear susceptibility. The explicit form of linear
susceptibility, given by nonstationary quantum perturbat
theory, is well known@1#, @p. 440#,

a~v!5
1

\ (
k

2uxnku2vkn

vkn
2 2~v1 i0!2 , ~1.6!

wherexnk is the matrix element of the active coordinate,vkn
is a transition frequency between the statesuk& and un&, and
vkn5(Ek2En)/\.

Its classical analog for one-dimensional systems was
tained in@3#

a~v!52V(
s51

`
d

dE S s2uXsu2V

s2V21~v1 i0!2D , ~1.7!

whereXs is the amplitude of thesth Fourier harmonic of the
unperturbed motion, andV is the main harmonic frequency

The linear susceptibility is well defined only in the lim
of the infinitely small field magnitude, when the respon
can be written in the form~1.5!. For finite although arbi-
trarily small values ofF, the linear susceptibility loses valid
ity in the resonant case, that is, for sufficiently small fr
quency mismatches. In this domain of parameters
2579 ©2000 The American Physical Society
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2580 PRE 61P. V. ELYUTIN AND B. V. PAVLOV-VEREVKIN
external field strongly influences the motion of the syste
To describe the system’s response in this case the met
that go beyond the perturbation theory are needed.

Nonperturbative approaches to the problem of the
sponse have been developed in the frame of the quan
theory. For strongly anharmonic systems near the reson
the model of a two-level system can be used@4#, whereas for
weakly anharmonic ones the model of quantum nonlin
resonance in the rotating-wave approximation@5–7# could be
applied. However, the applicability of these methods is c
trolled by the conditions of smallness of certain dimensio
less parameters that are proportional to\21. Therefore it is
impossible to stretch these approaches to the quasiclas
limit \→0.

To describe the response of a classical system to the r
nant field, we shall introduce a new quantity, the harmo
susceptibility, which extends the notion of the linear susc
tibility to arbitrary values of amplitude and frequency of th
external field, and whose definition will be valid irrespecti
of the character of the systems motion, whether it is regu
or chaotic.

If for t,0 the ensembleE of the systems~1.1! was in a
state that had the property~1.3!, and if for t.0 the field was
turned on within the time interval 0,t,t so that fort.t
the field can be described by the model~1.2!, then the quan-
tity

A~v!5 lim
T→`

2

FTE0

T

^x~ t !&cosvtdt ~1.8!

will be called theharmonic susceptibilityof the system. This
quantity is proportional to the amplitude of the Fourier co
ponent of the averaged perturbed motion of the syst
which coincides with the external field in frequency and
phase. The harmonic susceptibility depends in general on
field strength~see the Appendix! and in the limitF→0 is in
agreement with the linear susceptibility: if the response
the system has the form~1.5!, then the harmonic susceptibi
ity

A~v!5a8~v!. ~1.9!

The purpose of this paper is to study the properties of
harmonic susceptibility of a nonlinear system with one d
gree of freedom in the cases of regular and chaotic motio
the system. In Sec. II the model is described and the pen
lum Hamiltonian is derived. In Sec. III the harmonic susce
tibility is found for an intermediate field magnitude, whe
only one nonlinear resonance dominates. In Sec. IV the
monic susceptibility is found for a strong field, when wid
spread chaos is observed. The main results are summa
in Sec. V.

II. THE MODEL

As an example for the study we took the Duffing oscil
tor with the two-well potential, that is, model~1.1! and~1.2!
with the Hamiltonian function

H0~x,p!5
p2

2M
2Ax21Bx4. ~2.1!
.
ds
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In the following we use the system of units in whichM
51, A51/2, andB51/4.

We shall restrict ourselves by studying the energy ran
E.0, where there is only one connected domain of the c
sical motion, and introduce the action-angle variables for
unperturbed system. The action variableI is given by the
expression

I ~E!5
1

2p R p dx5
2A«

3p
@~«21!K~«1!12K~«2!#,

~2.2!

where«5A114E,

«15A«11

2«
, «25A«21

2«
, ~2.3!

and K(z) is the complete elliptic integral of the first kind
Equation ~2.2! defines implicitly the Hamiltonian function
H0(I )5E of the unperturbed two-well oscillator. Further, w
treat the dependence of variables on the energyE and on the
action I on equal footing. The frequency of the unperturb
motion V(I ), which yields the rate of increase of the ang
variableu, is given by the relation

V~ I !5
dH0~ I !

dI
5

pA«

2K~«1!
. ~2.4!

For a given energy valueE @or the corresponding action
valueI (E)# and the initial conditionx(0), the law ofmotion
x(t) can be expressed explicitly in terms of the Jacobi ell
tic functions. This motion is periodic and can be represen
by its Fourier expansion:

x~ t !5 (
n51

`

a2n21~ I !cos@~2n21!u#, ~2.5!

whereu5V(I )(t2t8), and t8 is the moment of time when
the particle is at the right turning point.

The Fourier amplitudesa2n21(I ) are given by

a2n21~ I !5
pA2«

K~«1!
cosh21S ~2n21!p

K~«2!

K~«1! D . ~2.6!

At a given value ofI, the amplitudes decrease exponentia
with the growth ofn. If the value of the energyE is not too
small (E.1), then the first harmonic dominates in the law
motion: a2n21 /a1!1 for all n>2. Thus the one-mode ap
proximation of the law of motion,

x~ t !'a1~ I !cosu, ~2.7!

can be used in this energy range.
The perturbed motion of the system can be studied in

paradigm of the nonlinear resonance@8–10#. Let us consider
the system~2.1! with the initial energyE under the externa
perturbation~1.2!, which is suddenly imposed (t50) at the
moment t50. With the assumption~2.7!, the Hamiltonian
function of the perturbed system can be written in the fo

H~ I ,u,t !5H0~ I !2Fa1~ I !cosu cosvt. ~2.8!
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PRE 61 2581RESPONSE OF A NONLINEAR HAMILTONIAN SYSTEM . . .
The corresponding equations of motion are

İ 52Fa1sinu cosvt, u̇5V~ I !2F
da1

dI
cosu cosvt.

~2.9!

Let I 0 denote the value of the action variable of the unp
turbed model such that the corresponding frequency eq
that of perturbation,V(I 0)5v. If the field frequency is close
to that of the unperturbed motion,v'V(E), then the fre-
quency dependence on the action can be linearized:

V~ I !'V~ I 0!1kJ, ~2.10!

where the nonlinearity parameterk is equal to the derivative
of the frequency on action,

k5
dV~ I !

dI
, ~2.11!

taken at the valueI 5I 0, andJ5I 2I 0 is the action mismatch
assumed to be small. By the introduction of the slow an
variablec5u2vt, neglecting all nonresonant terms and i
noring the dependence of the first harmonic amplitude on
action value,a1(I )'a1(I 0)[a, Eqs.~2.9! turn into the sys-
tem

J̇'2
Fa

2
sinc, ċ5kJ. ~2.12!

These equations are the canonical ones for the Hamilto
function of the pendulum,

Hp~J,c!5
k

2
J22

Fa

2
cosc. ~2.13!

The variableJ is the angular momentum of the pendulu
andc is the angle variable. The transition from the Ham
tonian~2.8! to the effective Hamiltonian~2.13! is a standard
procedure of the nonlinear dynamics, discussed in m
sources@9,10#.

The phase space of the pendulum~see Fig. 1! has three
distinct regions. Within the separatrix of the system, foruJu

FIG. 1. The localization of ensembleP ~see Sec. III A! in the
phase space of the pendulum~2.13! ~dimensionless units!. The ini-
tial angular momentumJ(0) is the same for all the pendulums; th
initial phasec(0) is distributed uniformly within@0,2p#. The tra-
jectories outside the separatrix are rotators, the trajectories w
the separatrix are librators. Librators exist only ifuJ(0)u
,A2Fa/k.
-
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,A2Fa/k sin(c/2), the phase points are captured in the no
linear resonance and the motion is librating (^ċ& tÞ0). Out-
side the separatrix, whereuJu.A2Fa/k sin(c/2), the motion
of the pendulum is rotating (^ċ& t50). The frequency half-
width of the nonlinear resonanceD r at the energy valueE
5E(I 0) can be defined from Eqs.~2.13! and ~2.10! as

D r5A2Fak. ~2.14!

The pendulum Hamiltonian is valid for describing the m
tion of system~2.1! if the higher terms of the functionsV(I )
anda1(I ) are negligible at all possible values of action m
match within the separatrix. These conditions impose
limitations ~from above! on the field strength, which, how
ever, was never violated in the physically interesting ran
of parameters values. The other limitations of the sin
resonance pendulum model are related to a possible ove
of resonances; they will be discussed in Sec. III C. We n
in passing that the resonance model remains valid howe
small the frequency mismatch may be.

III. THE RESONANT CASE

A. The analytical solution

In this section we shall study the response of the sys
in the domain of parameters where the pendulum model w
the single resonance is applicable. Let us consider the mi
canonical ensembleE of two-well oscillators with the same
energyE ~and, consequently, the same value of actionI ) and
random phasesu(t) at any given moment of time. If the
perturbation is switched on instantly att50, then att510
the ensembleP of pendulums which corresponds to the e
sembleE consists of systems with the same value of t
angular momentum J(0)5I (E)2I 05D/k, where D
5V(E)2v is the frequency mismatch, and with initia
phasesc(0)5w, distributed uniformly within@0,2p# ~see
Fig. 1!. The effective energiesEp5Hp(J,c) of these pendu-
lums, consequently, are different. They belong to the inter

k

2
J2~0!2

Fa

2
<Ep<

k

2
J2~0!1

Fa

2
. ~3.1!

If the modulus of the frequency mismatch does not e
ceed the frequency half-width of the resonance,uDu<D r ,
then some phase points of the ensemble of pendulumsP are
captured in the nonlinear resonance~librators! and some
phase points stay outside the separatrix~rotators!. If uDu
.D r , then all points of the ensemble stay outside the se
ratrix and only rotation is possible.

In the one-mode approximation~2.7!, the law of motion
x(t) can be written as

x~ t !'a1~ t,w!cosc~ t,w!cosvt. ~3.2!

From the definition of the harmonic susceptibility~1.8! for
the ensembleE, we have

A~v!5
a

F
^^cosc~ t !& t&P , ~3.3!

in
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where^ & t denotes the averaging over the period of pen
lum ~which depends on its initial phasew), and^ &P denotes
the ensemble averaging~over w).

The time averaging in Eq.~3.3! can be carried out ana
lytically. Let us introduce the dimensionless function

e~w!5
2

Fa
Hp„J~0!,w…5z2cosw, ~3.4!

where z5kJ(0)2/Fa. Then for the rotator states (21,e
,1)

^cosc~ t,w!& t
(r )52112

E~h!

K~h!
, h5A11e

2
, ~3.5!

and for the librator states (e.1)

^cosc~ t,w!& t
( l )52a1~a11!

E~j!

K~j!
, j5A 2

11e
.

~3.6!

HereK(z) andE(z) are the complete elliptic integrals of th
first and second kinds correspondingly. Thus the harmo
susceptibility of the microcanonical ensemble of Duffing o
cillators with the energyE in the 1:1 resonance is given b
the following formula:

A~v!5
a

2pF F E
2b

b

^cosc~ t,w!& t
(r )dw

1E
b

2p2b

^cosc~ t,w!& t
( l )dwG , ~3.7!

whereb5arccos(z21) for 0,z,2 andb50 for z.2.
Equation ~3.7! permits us to segregate the asympto

forms of harmonic susceptibility. For large frequency m
matches (D@D r), the harmonic susceptibility in the resona
approximation has the asymptotic form

A~v!'2
ka2

2~V2v!2 . ~3.8!

In this nonresonant case the perturbative approach is val
gives for the linear susceptibility the same asymptotic~3.8!.
It means that Eq.~3.7! can be used for the calculation of th
harmonic susceptibility of a nonlinear system far away fro
the resonance as long as the one-resonance approxim
holds.

B. The numerical calculations

In the derivation of the pendulum model~2.13!, several
approximations have been made that have unclear influe
on the numerical accuracy of the final result. Therefore, i
worthwhile to compare the theoretical results with the dir
numerical simulation of the motion of the system.

This comparison is presented in the Fig. 2. The theoret
and experimental values of the harmonic susceptibilityA are
plotted as functions of the perturbation frequencyv for the
ensembleE with the initial energyE51 for the field value
F54.2431022.
-

ic
-

-

it

tion

ce
s
t

al

To obtain one point of the theoretical plot, the integra
~3.7! were calculated over the total number of pointsN
5102. The numbers of pointsN(r ) and N( l ) used for the
calculation of the contributions of rotators and librators
the harmonic susceptibility depended on the value ofb:
N(r )5@Nb/p#, N( l )5N2N(r ), where rectangular bracket
@ # denote the truncation of a fractional part of a number
the brackets.

In the numerical experiment, the ensembleE was formed
by 102 different trajectories distributed uniformly along th
line, which corresponded to the same energyE51. For each
set of the initial values$xi ,pi%, the equations of motion were
integrated numerically by the Runge-Kutta Fourth-ord
method with the time stepDt5min$0.05,2p/50v21%. Simul-
taneously with the integration, the contributionAi(v) of the
trajectory to the harmonic susceptibility was calculated a

Ai~v!5(
k

xi~ tk!cos~vtk!, ~3.9!

wheretk is the moment of time, which corresponds to thekth
integration step,tk5kDt. The time averaging was carrie
over the intervalsT52p3103v21. Finally, the average
value A(v) and the standard deviationdA(v) of the array
$Ai(v)% were calculated.

The most prominent feature of the dependenceA(v) is a
maximum at the center of the resonance. The estimate o
upper limit of the maximal value ofA(v) in the exact reso-
nance is given bya/F, which for our set of parameters yield
maxA,40. The rotators always produce negative contrib
tions toA(v); they dominate when the frequency mismat
exceedsD r . Outside the resonant domain the behavior
A(v) is close to that of the perturbative linear susceptibil
given by Eq.~1.7!; the negative contribution from the term
of the second order inD21 prevails everywhere in the non
resonant domainuDu.D r except the range of low frequen
cies: A(v).0 if v,0.32. The absolute value of harmon
susceptibility is too small in this range to be visible in th
plot.

The dependence of the form ofA(v) on the parameters is
clear. The variation of the initial energyE shifts the curve as
a whole reflecting the change of the first harmonic f

FIG. 2. The harmonic susceptibilityA(v) of the Duffing oscil-
lator in the resonant case for values of the initial energyE51 and
the field amplitudeF54.2431022. All the units are dimensionless
Solid line, calculations based on the formula~3.7!; circles, the result
of numerical simulations. The bars indicate the standard devia
dA in the ensemble. The resonance at the third harmonic is cle
visible in the vicinity ofv'3.3 ~see Sec. III C!.
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quency. The increase of the field amplitudeF decreases the
height of the resonant maximum and broadens it. On
contrary, if F→0, then the resonance width diminishes li
D r;AF, and the peak value increases likeA1;1/F.

C. The higher resonances

The numerical results presented in Fig. 2 show als
smaller peak of the harmonic susceptibility at the freque
v'3.3. It can be interpreted as a trace of the resona
between the frequency of the third harmonic 3V of the un-
perturbed motion of the system and the frequency of
external fieldv @following the ratioV(E)/v, we shall call it
subharmonic resonance 1:3#. To study this region, the new
pendulum model must be constructed in the way describe
Sec. II.

By taking into account only the resonant third harmon
of the unperturbed motion, we come to the effective pen
lum Hamiltonian,

H̃p~ J̃,c̃ !5
3k̃

2
J̃22

Fã

2
cosc̃, ~3.10!

where

k̃5
dV~ I !

dI
, ã5a3~ I !, ~3.11!

taken at I 5 Ĩ 0, which is defined by the equation 3V( Ĩ 0)
5v; J̃5I 2 Ĩ 0 , c̃53u2vt. From Eq.~3.10!, the maximal
mismatch between the third harmonic of the unperturb
motion and the field frequency, which we shall call the fr
quency half-width of 1:3 resonance at the energyE

5E( Ĩ 0), D̃ r , is equal to

D̃ r53A2Fãk̃. ~3.12!

The widths of 1:1 and 1:3 resonances, which correspon
the same value of energyE, are related as

D̃ r

D r
53Aã

a
, ~3.13!

since I 05 Ĩ 0 in this case. For energyE51 the ratioD̃ r /D r
'0.88, which is in good agreement with Fig. 2.

IV. THE CHAOTIC CASE

In the preceding section we assumed that the pertur
ensemble remains always near one of the isolated nonli
resonances. In this case the motion of each system is q
periodic with two frequencies, one of which coincides w
the frequency of the perturbation, and another depends
the initial conditions.

The growth ofF leads to the increase of the widths of th
resonances@see Eq.~2.14!#. For every pair of resonance
there is a critical valueFx of field strength at which they
overlap. This event is usually treated as a cause of the
pearance of widespread chaos~Chirikov’s criterion! @9,10#.
The valueFx is called ‘‘chaos threshold’’ and gives an es
e
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mate of a perturbation strength that leads to the widespr
chaotic motion.

For the Duffing oscillator in the range of initial energie
E;1, the chaos thresholdFx for the given frequency of the
perturbation is governed by the overlap of 1:1 and 1:3 re
nances~see Fig. 3!: the widespread chaos appears when
field of frequencyv and amplitudeF becomes resonant fo
both the first harmonic of the unperturbed motion at the
ergyE and for the third harmonic of the unperturbed moti
at a smaller value of energyẼ. The condition of overlap of
resonances can be written in the form

v2D r5
v

3
1

D̃ r

3
. ~4.1!

From Eqs.~2.14!, ~3.12!, and ~4.1! we obtain for the chaos
threshold

Fx5
4v2

9~A2ka1A2k̃ã!2
. ~4.2!

In Fig. 4 the chaos thresholdFx is plotted as a function of
field frequencyv. Figure 4 shows that the value of the fie
F51.0 provides the widespread chaos in the range of fi
frequenciesv,2.07.

Although the chaotic motion is mixing, thus leading to th
continuous power spectra of dynamic variables, the h
monic susceptibility of the ensemble does not vanish. For
system that is strongly perturbed by the harmonic exter
field, the spectrum contains also a singular component at

FIG. 3. The overlap of 1:1 and 1:3 resonances~schematically;
arbitrary units!. The upper and lower borders of the 1:1 and 1
resonances are plotted by solid lines. The widths of the resona
increase with the field magnitude. The overlap of the resonan
that occurs atFx indicates a threshold of the widespread chaos.

FIG. 4. Chaos thresholdFx as a function of field frequencyv
~dimensionless units!. The external periodic field with the ampli
tude F51 leads to chaotic motion, if its frequency satisfies t
inequalityv,2.07.
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2584 PRE 61P. V. ELYUTIN AND B. V. PAVLOV-VEREVKIN
frequencyv. Thus the motion of the system has the prop
ties of a nonstationary random process. This is clearly s
from the traces of the phase trajectory on the Poincare´ sec-
tions ~see Fig. 5! that are taken at different values of th
phasef of the perturbing field. Patterns on the Poinca´
sections demonstrate that for the chosen valuesF51.0, E
51.0, andv51.0 the chaotic component of the phase sp
covers nearly all the surface of the section. On the ot
hand, the shape and the position of the section depend o
field phasef periodically, i.e., regularly. Hence, chaotic an
regular responses coexist.

For the numerical calculation of the harmonic suscepti
ity A(v) in the chaotic regime we have taken valuesF
51.0, E51.0. The dependence is shown in Fig. 6 by the t
line. We note the following specific features: first, there is
plateau at the low field frequenciesv,V(E); second, the
resonance shape is qualitatively reproduced in the rangv
.V(E). The origins of both of these features are cle
Given the field magnitudeF51.0, in the case of high
frequency perturbationv.2.07, the motion remains regula
since the 1:1 resonance persists. In the low-frequency ra
v,2.07, the motion is chaotic. Since chaos originates fr
the overlap of 1:1 resonance at energyE with 1:n subreso-
nances, which correspond to smaller values of energy,

FIG. 5. Traces of the phase trajectory of a strongly pertur
system on the Poincare´ sections (OY, momentum of particle;OX,
its coordinate; units are dimensionless! for the ensemble withE
51. The stroboscopic sections$j% represent the moments of tim
tk5(2p/v)(k1 j /4). Lines denote the external border of the se
tion taken at the previous value of phase.

FIG. 6. The harmonic susceptibilityA(v) of the Duffing oscil-
lator in the chaotic case for values of the initial energyE51 and
the field amplitudeF51. All the units are dimensionless. Soli
line, calculations based on the formulas~4.3! and ~4.4!; dots, the
result of numerical simulations.
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initially microcanonical ensembleE of Duffing oscillators
diffuses to lower energies within the time of the order of t
inverse Lyapunov exponent. Thus, the effective ensem
E8, which actually responds on the perturbation, essenti
differs from E. We can think about every system in the e
semble as if it were in the 1:1 resonance with the exter
field. This assumption is justified by the great width of th
resonance. The positive contribution of systems with sm
frequency mismatches to the harmonic susceptibility prev
and leads to the plateau in the dependenceA(v).

To make the analytical description of harmonic susce
bility of the effective ensembleE8 tractable, we use a set o
simplifying assumptions. First, only the main(1:1) reso-
nances are taken into account and considered to be isol
Second, we assume that the energy of a particle is chan
by rare jumps. Third, we assume that in the domainv
,V(E) the effective ensembleE8 has the uniform energy
distribution. If v.V(E), then the effective ensembleE8
does not form and the response can be described as a
nant one.

With these assumptions the harmonic susceptibility c
be cast in the form of the onefold or twofold quadratures

A~v!5Ares~v;E! for v.V~E! ~4.3!

and

A~v!5E
0

E

Ares~v;«!
d«

E
for v,V~E!, ~4.4!

where Ares(v;«) denotes the resonant susceptibility of t
microcanonical ensemble of Duffing oscillators with the e
ergy« given by Eq.~3.7!. In Fig. 6 the result of the numeri
cal calculation is shown as a solid line. The agreemen
quite satisfactory, especially if one takes into account
crudeness of the simplifying approximations.

The theory presented above uses the concept of the
stantaneous frequency of motionV(E), which is appropriate
only if V̇(2p/V)!V. This condition can be rewritten in th
form

UdT

dEUFv!1, ~4.5!

whereT52p/V is the period of the Duffing oscillator. The
inequality~4.5! is violated in the vicinity of the saddle valu
of the energyE50, which imposes the restriction on th
field frequency. For example, ifF51, then for the 1:1 reso-
nance, Eq.~4.5! gives the lower limit of the field frequency
v2;0.8.

V. CONCLUSIONS

In this paper, a new characteristic of the response of
nonlinear systems to the external harmonic field, the h
monic susceptibilityA(v), has been introduced and studie
The harmonic susceptibility properly generalizes the co
mon linear susceptibility but does not impose any restrictio
on the parameters of the field or the character of the syste
motion. The quantityA(v) has the exact value if the state
of the ensemble remain localized in the phase space;

d
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condition is always fulfilled for the resonant case. In t
chaotic case the overlap of resonances can produce the
of the unlimited diffusion in the phase space, which even
ally may lead to the decay of the system~e.g., the stochastic
ionization of the highly excited atoms@11–14#!. For this
class of systems the harmonic susceptibility can serve
useful characteristic of the transitional period.

The harmonic susceptibility has clear experimental me
ing. If the ensemble of the identical noninteracting nonline
oscillators with equal energies and random phases is
jected to the field of a monochromatic wave, then the int
sity of the scattered radiation is proportional to the square
A(v) provided that the spatial extent of the ensemble
small in comparison with the radiation wavelength.

We have studied only the one-dimensional examp
However, the harmonic susceptibility can be calculated
systems with any number of degrees of freedom. That p
mits us to study the response of the system with the cha
unperturbed motion in the harmonic fields of finite amp
tude. At present, only the case of the infinitesimal fie
strength has been studied@15,16#. The concept of harmonic
susceptibility can be straightforwardly generalized to
nonlinear harmonic susceptibilities that describe the respo
of the system on higher harmonics of the frequency of
perturbation in external harmonic fields of finite amplitude
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APPENDIX

The dependence of the characteristics of the synchr
component of the response on the field magnitude is an
ready known effect in quantum radiophysics. In particul
such a dependence occurs in the response of the two-
model @4#.
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The unperturbed system is described by the Hamilton
Ĥ0 with the energy spectrum$En% and wave functionsun&.
The homogeneous electric field of frequencyv and strength
F/e, wheree is the electron charge, is imposed along theOX
axis. If v'vmn5(Em2En)/\, m.n, then in the rotating-
wave approximation the two-level system can be descri
by the equations for the components of its Bloch vectoru, v,
andw:

u̇52Dv, v̇5Du1V rw, ẇ52V rv, ~A1!

where D5v2vmn , V r is the Rabi frequency,V r

52d0F/\e, andd0 is the matrix elementd05^nuex̂um&. The
componentw describes the population inversion, whereas
componentsu andv are related to the atom’s dipole mome
d(t):

d~ t !5d0@u cosvt2v sinvt#. ~A2!

Solving Eq. ~A1! with the initial conditionsu(0)5v(0)
50, w(0)521, which correspond to the initial statec(0)
5un&, we obtain for the dipole moment

d~ t !5^ex̂&5
2d0

2F

\e F D

Vs
2cosvt1•••G , ~A3!

whereVs is the shifted Rabi frequency,

Vs~D!5AV r
21D2, ~A4!

and ‘‘••• ’’ denotes terms with other frequencies. Thus, t
harmonic susceptibility~1.8! of the two-level model is equa
to

A~v!5
2d0

2

\e2

D

Vs
2 . ~A5!

We note that in contrast with the properties of the harmo
susceptibility of the nonlinear oscillator, the HS of the tw
level system decreases likeA(v)}F22 in the limit of strong
fields, and thatA(v)50 in the exact resonance.
iz.
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